Packing twelve spherical caps to maximize tangencies

نویسندگان

  • Lisa Flatley
  • Alexey Tarasov
  • Martin Taylor
  • Florian Theil
چکیده

The maximum number of non-overlapping unit spheres in R that can simultaneously touch another unit sphere is given by the kissing number, k(3) = 12. Here, we present a proof that the maximum number of tangencies in any kissing configuration is 24 and that, up to isomorphism, there are only two configurations for which this maximum is achieved. The result is motivated by a three-dimensional crystallization problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity of spherical codes

A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configurati...

متن کامل

Upper Bounds for Packings of Spheres of Several Radii

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for pa...

متن کامل

Packing and Minkowski Covering of Congruent Spherical Caps

Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, rN (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under the...

متن کامل

Stability of the simplex bound for packings by equal spherical caps determined by simplicial regular polytopes

It is well known that the vertices of any simplicial regular polytope in R determine an optimal packing of equal spherical balls in Sd−1. We prove a stability version of this result.

متن کامل

Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere , II : Cases of N = 10 , 11 , and 12

Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, rN, (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 254  شماره 

صفحات  -

تاریخ انتشار 2013