Packing twelve spherical caps to maximize tangencies
نویسندگان
چکیده
The maximum number of non-overlapping unit spheres in R that can simultaneously touch another unit sphere is given by the kissing number, k(3) = 12. Here, we present a proof that the maximum number of tangencies in any kissing configuration is 24 and that, up to isomorphism, there are only two configurations for which this maximum is achieved. The result is motivated by a three-dimensional crystallization problem.
منابع مشابه
Rigidity of spherical codes
A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configurati...
متن کاملUpper Bounds for Packings of Spheres of Several Radii
We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for pa...
متن کاملPacking and Minkowski Covering of Congruent Spherical Caps
Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, rN (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under the...
متن کاملStability of the simplex bound for packings by equal spherical caps determined by simplicial regular polytopes
It is well known that the vertices of any simplicial regular polytope in R determine an optimal packing of equal spherical balls in Sd−1. We prove a stability version of this result.
متن کاملPacking and Minkowski Covering of Congruent Spherical Caps on a Sphere , II : Cases of N = 10 , 11 , and 12
Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, rN, (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 254 شماره
صفحات -
تاریخ انتشار 2013